#1/usr/bin/perl -w
use strict;

#FILE: cmah.pl
#PROJECT: Reproductive Incompatibility by Immunity
#AUTHOR: Stevan Springer

#SECTION 0 - INITIALIZATION

#0a - Subroutines

use sub_calculate_binomial_probability;
use sub_calculate n_choose_k;

#0b - Command line input/output
my $time_start;
my $outfile;

#0c - Model parameters
my $increment g = 0.01;
my $n = 1;
my $k = 0;
my $mating attempts = 20;
my $compatibility = 0;

#0d - Model variables
my $d;

my $m_s;

my $m_g nextgen;

my $m_delta_g;

my $m_percent delta g;

my $f_s;

my $f g nextgen;

my $f_delta_g;

my $f percent delta g;
my $encounter prob;
my $prob unmated;

my $net_s;

my $net_delta_ g;

my $net percent delta g;
my $past_net_s;

my $past_net_delta_ g = -1;

#0e - Read control file name from @ARGV, open and read into @input control
if (scalar(@ARGV) != 0) {
print (STDERR

Usage: cmah.pl

Description: Analytical model of immune mediated incompatibility.

Input: No control file. Specify parameters by changing values directly in cmah.pl\n\n");
exit(1l);

}

#SECTION 1 - MODEL
Payoff Matrix: g is the frequency of the allele for the loss of sialic-acid.
Females have a non-self immune reaction to the sperm of (+/+) and (+/-) males,

HHHFHRHFHHR

Female
++ +- -
++ 1 1 0
Male +- 1 1 0
- 1 1 1

#la - Program execution
print "Matings ZeroPoint Compatibility = S$compatibility\n";

while ($n <= $mating attempts) { #Calculate deltas for n mating attempts
Soutfile = "output/Compatibility=$compatibility-Matings=$n.xls";
open (OUTPUT, "+>>$Soutfile") or die "can't open $outfile $!";
print OUTPUT "g\tnet_delta g\tm_delta_g\tf_delta g\tg\tnet_s\tm s\tf_s\t$time start
Program: cmah.pl Mating Attempts: $n\n";

$q = $increment g; #Start at lowest increment
while ($q < 1) {

#1b - Calculate the dynamics for males

$m s = (1 - $compatibility) * $g**2;
#Proportion of females compatible with a
#compatible with a (+/+) or (+/-) male =
#disadvantage to (+/+) and (+/-) males.

$m_g_nextgen = ($q - ($m_s * $q) + (Sm_s * $qg**2)) / (1 - ($m_s * (1 - $g**2)));
#From Falconer, page 28, scenario 4, selection against dominant allele.

$m_delta g = $m_g nextgen - $qg;

$m_percent delta g = $m _delta g * 100;

(-/-) male = 1, Proportion
1-g”2. 9”2 = s_m, the

#1lc - Calculate the dynamics for females

$encounter prob = $g**2 + ($compatibility * (1-$g**2));
#(-/-) females are only compatible with (-/-) males, therefore the
#probability of encountering a (-/-) male in each mating attempt is g
#squared.

$prob_unmated = calculate binomial probability($n, $k, $encounter_ prob);
#Probability that a (-/-) female encounters k=0 compatible mates in n
#matings.

$f s = $prob unmated;
#Proportion of (-/-) females that did not mate (-s) relative to (+/+) and

#(+/-) females (1l). Note that the proportion that mated is 1l-s therefore
#the proportion that are unmated is s_female.

$f_g nextgen = ($q - ($f_s * $g**2)) / (1 - ($f_s * $g**2));
#Equation 3 from page 28 of Falconer.

$f delta g = $f g nextgen - $qg;

$f percent delta g = $f delta g * 100;

#1d - Calculate net selection, net direction of frequency change and zero points
$net_s = $m_s - $f_s;
$net_delta_g = $m_delta g + $f_delta g;
$net_percent_delta_qg = $net_delta g * 100;

print OUTPUT "$qg\t$net_percent_delta g\t$m percent delta g\t$f_ percent delta g
\t$g\t$net_s\t$m_s\t-$£f_s\n";
if ($net_s >= 0 and $past_net s < 0) {
print "ZeroPoint_ s: $n $g\n";

}

if ($net_delta g >= 0 and $past _net delta g < 0) {
print "Zero Point Delta g: $n = $g\n";

}

$past_net_s = $net_s;

$past_net_delta g = $net_delta_g;

#le - Increment $g and $n counters
$q = sprintf("%.3f", $q + $increment q);

}
Sn++;
close OUTPUT;

#FILE: sub_calculate binomial probability.pm
#SUBROUTINE: CALCULATE BINOMIAL PROBABILITY

#Input: # of attempts (n), # of occurrences (k), and probability of occurrence in each
attempt (p).

#Return: The probability of the event occuring k times.
sub calculate binomial probability {

my ($n,$k,$p) = €_;

#Method of calculating binomial probability

return $k == 0 if $p ==0;

return $k != $n if $p == 1;
return calculate n_choose_k($n, $k) * $p**$k * (1-$p)**($n-$k);

}

1

#FILE: sub_calculate_n_choose_k.pm

#SUBROUTINE: CALCULATE_N_CHOOSE_K

#Input: size of the total set (n), # of elements to draw from the set (k).
#Return: The number of ways to choose k elements from a set of n elements.

sub calculate_n_choose_k {

#calculate n _choose _k($n, $k) is the number of ways to choose $k elements from a #set of $n
elements, when the order of selection in irrelevant.

my ($n,$k) = @_;
my ($result, $3j) = (1, 1);

return 0 if $k > $n || $k < 0;
$k = ($n - $k) if ($n - $k) < $k;

while ($3 <= $k) {
Sresult *= Sn--;
Sresult /= $j++;
}

return $result;

}

1

